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A comprehensive study of the effect of wall heating or cooling on the linear, transient
and secondary growth of instability in channel flow is conducted. The effect of
viscosity stratification, heat diffusivity and of buoyancy are estimated separately, with
some unexpected results. From linear stability results, it has been accepted that heat
diffusivity does not affect stability. However, we show that realistic Prandtl numbers
cause a transient growth of disturbances that is an order of magnitude higher than at
zero Prandtl number. Buoyancy, even at fairly low levels, gives rise to high levels of
subcritical energy growth. Unusually for transient growth, both of these are spanwise-
independent and not in the form of streamwise vortices. At moderate Grashof
numbers, exponential growth dominates, with distinct Poiseuille–Rayleigh–Bénard
and Tollmien–Schlichting modes for Grashof numbers up to ∼25 000, which merge
thereafter. Wall heating has a converse effect on the secondary instability compared
to the primary instability, destabilizing significantly when viscosity decreases towards
the wall. It is hoped that the work will motivate experimental and numerical efforts
to understand the role of wall heating in the control of channel and pipe flows.

1. Introduction
One of the well-known methods for delaying a transition to turbulence, for example

in boundary layers, has been to reduce the viscosity at the wall. Such a reduction
could be brought about by heating or cooling the surface, for example. The objective
of this paper is to study the effect of wall heating on the instability of a channel
flow. It is shown that heat can have surprising effects on the different mechanisms
of transition. We restrict ourselves here to routes based on the linear eigenmodes,
a direct nonlinear interaction will be studied in future. The emphasis here is on
delaying/advancing the onset of transition to turbulence, rather than drag reduction
in full turbulence, as achieved by adding small quantities of polymer.

In the linear regime, the early boundary-layer experiments of Wazzan, Okamura &
Smith (1968) in water and Liepmann & Fila (1947) in air reported stabilization by
heating and cooling, respectively. Several other experiments were carried out later
to confirm these findings. For example, Lauchle & Gurney (1984) showed that the
transition Reynolds number is increased by over an order of magnitude by heating the
walls of an axisymmetric body in a water tunnel. The picture can be quite different in
channel flow. The critical Reynolds number for linear instability in a plane Poiseuille
flow is 5772.22 (Orszag 1971). However, experiments usually find fully developed
turbulence at a much lower Reynolds number, around 1500 (see e.g. Davies & White
1928; Narayanan & Narayanan 1967; Patel & Head 1969; Kao & Park 1970). It
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Figure 1. Schematic diagram of the channel, asymmetric heating. The two walls are held at
different temperatures, Thot and Tcold , so the mean temperature profile is linear. For buoyancy
affected flows, gravity is taken to be along y, downwards for stable stratification.

is clear that routes to turbulence other than the traditional Tollmien–Schlichting
(TS) mechanism are in operation. The background noise in the flow has a major
influence in delaying/hastening transition to turbulence, as well as in deciding which
mechanism will be dominant (Morkovin & Reshotko 1989). At extremely low levels
of noise a traditional TS mechanism and/or secondary instability is likely to be
followed. At intermediate levels, a transient growth of disturbances is the more likely
mechanism for initial disturbance growth (Foster 1997; Corbett & Bottaro 2001;
Schmid & Henningson 2001; Meseguer 2002). Once disturbance growth is triggered
by a linear mechanism, nonlinearities are required to achieve a new self-sustained
state. Alternatively, at higher levels of background noise, nonlinear mechanisms can
directly come into play (see e.g. Waleffe 1997; Faisst & Eckhardt 2003; Hof et al.
2004). At present, it is not understood exactly which route will be followed when (for
a review on pipe flow see Kerswell 2005).

As mentioned above, several workers have studied the effect of wall heating on linear
stability alone. Here too, the effect of buoyancy has not been clearly quantified. To
our knowledge, a detailed study of other mechanisms has not been done. Two related
studies of transient growth had different emphasis from the present work: (Malik &
Hooper 2005) evaluated the transient growth in two-fluid flow in two-dimensions
with the objective of understanding the effect of the interface; Biau & Bottaro
(2004) studied transient growth with stable thermal stratification and concluded that
such stratification is a viable strategy to control transitional flows. A more detailed
retrospective on earlier work is included in the relevant sections later in the text.

We consider two types of heating, as discussed in detail in § 2. The first is asymmetric,
with the two walls maintained at different constant temperatures. The second is
symmetric, with the walls at one temperature and the fluid at another, and is
presented mainly to contrast with the results of the first. In each case we study the
linear instability, the transient growth and the secondary instability. Heat can affect
the stability of the flow because of the resulting mean viscosity stratification, or
through temperature perturbations, and at levels of heating, through buoyancy. We
consider each of these effects separately. We present results only at some typical values
of the relevant parameter, such as the Reynolds number or the temperature difference.
However, a much larger range of the parameter space has been explored and the
results are representative. In wavenumber space, the emphasis where necessary, is on
the least stable region.

2. Basic velocity profiles
Two types of temperature variation, which we shall refer to as the asymmetrically

and symmetrically heated cases, respectively, are considered (figures 1 and 2). The
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Figure 2. Schematic diagram of the channel, symmetric heating. Both walls are maintained
at the same temperature, different from that of the fluid.

second is used here mainly for the purpose, of comparison with the first, but the two
cases provide a fair sample of the type of stratification we may come across. In the first,
the two walls of the channel are maintained at different temperatures, Thot and Tcold .
At steady state, the temperature within the channel varies linearly between the two.
Note that for the unstable Poiseuille–Rayleigh–Bénard configuration, the temperature
difference �T between the bottom and top walls (and hence the corresponding
Richardson and Grashof numbers, defined later) is taken to be positive. The sign of
�T is unimportant when buoyancy is neglected.

In the above flow, the temperature decreases away from one wall and increases
away from the other. The effect on the two walls may thus be of opposing sign. To
bring physical arguments to bear on the problem, it is useful to contrast the results
we obtain with those obtained from a hypothetical symmetrically heated channel.
Here, the walls are both maintained at the same temperature, while the incoming
fluid is at a different temperature. The temperature profile would be of a developing
error-function type, with the fluid temperature equilibrating eventually with the wall
temperature. We present results taking the temperature to vary quadratically, but a
local error-function profile did not give qualitatively different results. Since the Péclet
numbers (the product of the Reynolds number and the Prandtl number) are high, the
change in the downstream direction is very slow, and the flow may be assumed to be
locally parallel.

The temperature-dependence of the viscosity µ is described by the Arrhenius model,
which works fairly well for most common liquids such as water and alcohol:

µd(T ) = C1 exp(C2/T ), (2.1)

where µ is the dynamic viscosity (the subscript d stands for a dimensional quantity)
T is the temperature, C1 and C2 are constants associated with the fluid under
consideration, which is taken in the present computations to be water, i.e. we set
C1 = 0.00183 Ns m−2 and C2 = 1879.9 K (see e.g. Lide 1999). Without loss of generality,
the temperature at the cold wall is taken to be 295 K. We have found that changes in
these numbers do not affect results qualitatively.

The streamwise direction is denoted as x, the coordinate y is normal to the wall,
and z is the spanwise direction. The mean x-momentum equation for a plane parallel
channel flow reduces to

(µU ′)′ =
dP

dx
Ref , (2.2)

where the primes denote differentiation with respect to y. A subscript f is used in
the above Reynolds number, defined as Ref = Umaxhρ/µref to distinguish it from the
Reynolds number Re defined later in terms of the average viscosity. h is the half-
channel width, ρ is the density, and dP/dx is the constant mean pressure gradient.
The effect of buoyancy is studied under the Boussinesq approximation, and ρ is taken
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Figure 3. Variation of (a) viscosity and (b) velocity with asymmetric heating. The velocity is
scaled by its maximum and the viscosity is scaled here by its value at the hot wall.
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Figure 4. Variation of the second derivative of basic velocity, U ′′, with symmetric heating.

to be constant except in the acceleration term. µref is the reference viscosity, at the
hot wall for asymmetric heating, and at the centreline for symmetric heating. The
quantity µ ≡ µd/µref, and we define a viscosity ratio m ≡ µcold/µref for the asymmetric
heated case and m ≡ µwall/µref, for the symmetric case. Knowing µ(T ) and T (y),
equation (2.2) is integrated twice by a fourth-order Runge–Kutta method to obtain
U . Figure 3 shows typical viscosity and velocity profiles for asymmetric heating. For
the symmetric case, the effect of viscosity stratification on the velocity profile is more
evident in its second derivative, which is shown in figure 4.

Unless otherwise specified, the Reynolds number is defined in terms of the average
viscosity across the channel, as

Re ≡ 2∫ 1

−1

µ dy

Umaxhρ

µref

, (2.3)

We can see from table 1 that the average viscosity varies significantly with increasing
�T , so defining the Reynolds number as above is approriate for making comparisons
at a given Reynolds number between heated and unheated flows. The average velocity
on the other hand is practically unchanged by viscosity stratification, as seen from
the same table, so the maximum velocity is a good enough velocity scale.
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�T (K) m µavg = 1
2

∫ 1

−1
µ dy Uavg/Uavg,m =1.0

50 0.39 0.748 1.068
10 0.81 0.933 1.006
0.0 1.00 1.000 1.000

−10 1.23 1.070 0.995
−50 2.51 1.381 0.9944

Table 1. The dependence of the average viscosity µavg on the viscosity ratio, m, symmetric
heating. The right-hand column shows the ratio of the average mean velocity to its value in
the unheated case. The ratio is close to 1.0 in all cases.

3. Linear stability
3.1. The stability equations and their solution

The equations for linear stability are derived by the standard procedure. Each flow
quantity is split into its mean and a perturbation. The perturbation quantities in
normal mode form are given as

[v̂, η̂, T̃ ] = [v(y), η(y), T̂ (y)] exp[i(αx + βz − ωt)], (3.1)

where v̂ and η̂, respectively, are the components of disturbance velocity and vorticity
in the direction normal to the wall, T̃ is the disturbance temperature, α and β are
the wavenumbers in the streamwise and spanwise directions, respectively, and ω is
the complex frequency of the wave. Substituting the flow quantities thus defined into
the momentum and continuity equations, subtracting the basic flow equations, and
neglecting nonlinear terms in the perturbation quantities, the linear stability equations
are derived to be

iα[(v′′ − (α2 + β2))(U − c) − U ′′v] =
1

Re

[
µ[viv − 2(α2 + β2)v′′ + (α2 + β2)2v]

+
dµ

dT
T ′2[v′′′ − (α2 + β2)v′] +

dµ

dT
T ′′[v′′ + (α2 + β2)v] +

d2µ

dT 2
T ′′[v′′ + (α2 + β2)v]

+
dµ

dT
[U ′T̂ ′′ + 2U ′′T̂ ′ + (α2U ′ + U ′′′)T̂ ] + 2

d2µ

dT 2
U ′T ′T̂ ′ +

d2µ

dT 2
T ′′U ′T̂

+
d3µ

dT 3
U ′T ′T̂ − Gr

Re
iαT̂

]
, (3.2)

iα(U − c)η + iβU ′v =
1

Re

[
µ[η′′ − (α2 + β2)η] +

dµ

dT
T ′η′ − iβ

dµ

dT
(U ′′T̂ + U ′T̂ ′)

− i
d2µ

dT 2
T ′U ′T̂

]
, (3.3)

iα(U − c)T̂ + T ′v =
1

ReP r
[T̂ ′′ − (α2 + β2)T̂ ], (3.4)

where c ≡ ω/α. The Prandtl number is defined as Pr ≡ ν/κ where κ is the coefficient
of thermal diffusivity, and the kinematic viscosity here is ν = µref/ρ. The Grashof
number is Gr ≡ gγ�T h3/ν2, g and γ being the acceleration due to gravity and the
volume coefficient of expansion, respectively. The Boussinesq approximation has been
employed.
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The effect of heating appears in the stability equations (3.2) to (3.4) in three types
of term. One set of terms appears because the mean viscosity µ is a function of the
mean temperature, which in turn is a function of the distance y from the wall. The
second effect comes from the viscosity stratification as well, but is due to the finite
diffusivity of the temperature perturbations. If the Prandtl number were to be zero,
the temperature perturbation obtained from (3.4) would be zero too. In other words,
heat diffuses away infinitely fast and a non-zero T̂ cannot be sustained. However as
the Prandtl number increases, the temperature perturbations are larger, and may be
expected to increasingly affect stability. A third effect of heat comes from the small
variation in density arising from the variation in temperature. This exerts a buoyancy
force, proportional to the Richardson number (Ri ≡ Gr/Re2), appearing in (3.2). In
what follows, each of these effects will be studied separately. If the equations above
were stripped of these three effects, we would be left with the Orr–Sommerfeld and
Squires equations for flow through a channel. If buoyancy alone were to be neglected,
the equations would be equivalent to those of Wall & Wilson (1996).

Equations (3.2) to (3.4) form an eigenvalue problem with the boundary conditions

v(±1) = v′(±1) = η(±1) = T̂ (±1) = 0, (3.5)

and are solved using a Chebyshev spectral collocation method (see Peyret 2002;
Canuto et al. 1987 for the standard technique). We have performed computations
with 81 and 161 collocation points across the channel, and the eigenvalues change
only in the sixth decimal place at worst. For an unheated channel, the accuracy is
much better and the eigenvalues agree up to seven decimal places with Schmid &
Henningson (2001). Other accuracy checks are presented later in the paper. We
perform a temporal stability analysis, where the growth rate of the disturbance is
given by the imaginary part of ω.

3.2. Effect of viscosity variation

In order to isolate the effect of viscosity variation, the Prandtl number and the
Grashof number are set to zero. The linear stability of boundary-layer flows with
viscosity stratification has been studied by Kao (1968), Wazzan et al. (1968), Strazisar,
Reshotko & Prahl (1977) and Schafer, Severin & Herwig (1995). It is well-established
that a viscosity which decreases as one approaches the wall has a stabilizing effect
on the least stable eigenmode. This is because such a viscosity stratification makes
the velocity profile fuller, i.e. takes it further away from an inflectional profile. Since
the viscosity of liquids decreases with heating, a liquid boundary layer at a hot wall
is more stable, but the reverse is true of gases (Liepmann & Fila 1947). By the same
argument, a viscosity increase towards the wall is destabilizing, and this too has been
verified. In the flow through a channel with symmetric heating we therefore expect,
and find in the hypothetical case we study, that wall heating (m < 1) will result in a
more stable flow (figure 5).

However, in a channel flow where one wall is maintained at a constant high
temperature and the other wall is kept cold, the viscosity decreases towards one wall
and increases towards the other. It is not a priori evident what the effect on the
linear stability will be. It was found by Potter & Graber (1972) that any temperature
difference between the walls is always destabilizing. However, Wall & Wilson (1996)
found, using four different viscosity models, that a temperature difference almost
always stabilizes the flow. The apparent contradiction is because the former work
compared results for heated and unheated flow maintaining the input power constant,
whereas the latter made comparisons at a given Reynolds number. Since the flow
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Figure 5. Effect of viscosity variation on the critical Reynolds number for linear instability,
symmetric heating. For unstratified flow, i.e. at m= 1.0, Recr is 5772.2.
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Figure 6. Stability boundaries for various viscosity ratios. Asymmetric heating,
Tcold =295 K.

rate for a given input power is higher for the heated case, the resulting Reynolds
number is higher. The stability of viscosity-stratified channel flows was also studied by
Pinarbasi & Liakopoulos (1995); Schafer & Herwig (1993) with conclusions similar
to Wall & Wilson (1996).

In the present paper, we define the Reynolds number in terms of average viscosity,
and compare results at a given Reynolds number. In agreement with Wall & Wilson
(1996), for asymmetric heating, we find that any temperature difference is stabilizing, in
terms of the least stable (two-dimensional) linear mode (figure 6). We have confirmed
(Sameen 2004) that the production of disturbance kinetic energy is reduced at the cold
wall and increased at the hot wall compared to the unheated case. The dissipation is
similar in all cases. The highly oblique modes, unlike the two-dimensional ones, are
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Figure 7. Least stable eigenvalue at various Prandtl numbers for different �T at α = 0.9
and Re = 1000, 5000. The effect of Prandtl number is negligible.

practically unaffected (not shown). This observation will assume significance when we
discuss transient growth.

3.3. Effect of heat diffusivity

We know that for liquids such as water, heat diffuses much slower than momentum, so
the assumption of Pr = 0 is not justifiable. Surprisingly however, the linear stability,
as measured by the least stable eigenmode, is practically unaffected by a decrease in
heat diffusivity (Wall & Wilson 1996). Present computations confirm this (figure 7).
However, the prevalent conclusion that heat diffusivity does not affect flow stability,
and therefore that the Prandtl number may be set to zero in stability analyses, is
shown in the next section to be incorrect. Increasing the Prandtl number to O(1)
values can enhance transient growth by an order of magnitude. We note a small but
curious dip in the growth rate just below Pr =1 in figure 7; what causes it is unclear
at this time. Wall & Wilson (1996) too obtain a similar dip (see table 2 of that paper),
and do not explain it either.

3.4. Effect of buoyancy: the Poiseuille–Rayleigh–Bénard problem

The relevant case for the study of buoyancy effects is the asymmetrically heated
one. When the upper wall is cold relative to the lower one, the resulting unstable
stratification of density leads, at low flow rates, to a buoyancy-driven instability similar
to the Rayleigh–Bénard (Turner 1959; Chandrasekhar 1961; Platten & Legros 1984).
The effect of mean shear on this instability has been studied by Deardorff (1965)
and Zhang, Childress & Libchaber (1998), for example, and this problem is reviewed
in Platten & Legros (1984) and Mahajan et al. (1988). This regime of instability
is termed the Rayleigh–Bénard–Poiseuille (RBP) instability. Carriere & Monkewitz
(1999) obtained stability boundaries for the RBP instability and showed that the flow
at very low Reynolds numbers and high Grashof numbers is absolutely unstable. At
a given Grashof number, the region of absolute instability is restricted to extremely
low Reynolds numbers. For example, at Gr = 2000, the flow is absolutely unstable
for Reynolds numbers below ∼10.
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Figure 8. Neutral stability Reynolds number as a function of Richardson number, Pr = 1.0.
For stable stratification (�T < 0), the Richardson number is negative, its absolute value is
plotted here. The portion to the right-hand side of the neutral points is unstable.

Our interest is in the regime of high flow rates, with Grashof numbers increasing
from zero, so the present instability would come under the class of Poiseuille–
Rayleigh–Bénard (PRB). The order of names is reversed to emphasize the reversal of
relative magnitudes, and also the fact that the modes of instability are distinct. Such
a situation has been investigated by Gage & Reid (1968), Gage (1971), Tveitereid
(1974) and Fujimura & Kelly (1988). However, several approximations were made
in these early studies. For example, viscosity variations were neglected and the base
flow was taken to be parabolic. It was found that a critical Reynolds number always
exists for any level of density stabilization, while there exists a Richardson number
above which the flow is stable for all Reynolds numbers.

In figure 8, the critical Reynolds number, Recr for a temperature difference of 25 K
is plotted for various Richardson numbers. The trends are the same as in Gage &
Reid (1968) and Tveitereid (1974), but there are minor numerical discrepancies, which
we attribute to the more appropriate velocity and viscosity profiles used here. The
effects of buoyancy are negligible when the Richardson number is below 10−4, and of
either sign. At higher Richardson numbers, for unstable stratification, figure 8 shows
that the flow is highly destabilized. The stability boundaries are plotted in figure 9 in
terms of the Grashof number, a given Grashof number being more simple to achieve
experimentally. Distinct modes of PRB type and of Poiseuille (or TS) type are evident
at intermediate levels of Gr . Increasing levels of buoyancy destabilize the TS mode
as well, so that the PRB and TS modes merge at Grashof numbers above ∼25 000.
The numerical value at the bifurcation point varies slightly with Prandtl number and
temperature difference.

The stability boundary is shown in the Grashof–Reynolds parameter space in
figure 10. The region of PRB instability is seen to occur only at Reynolds numbers
O(100) or higher, and the boundary is closed (figure 9) at low Grashof numbers, so
it is clearly distinct from the RBP mode of Carriere & Monkewitz (1999) at the same
Prandtl number. Since the results of Carriere & Monkewitz (1999) for convective
instability are restricted to Reynolds numbers below 15, the upper bound for the
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Figure 10. A consolidated picture of the variation of the critical Reynolds number with
the Grashof number. The Poiseuille mode is shown by the solid line, and the Poiseuille–
Rayleigh–Bénard mode by the dashed line. The region above the curves is unstable.

RBP mode is not evident, but visual extrapolation of the available curve indicates a
closure at Reynolds numbers much lower than those of present interest, at a given Gr .
In the Reynolds-number range studied here, i.e. O(102) to O(104), we expect that the
flow will be only convectively unstable. However, a search for absolute instabilities,
especially above the bend in the dashed line in figure 10 may yield interesting results.

We have discussed the stability in terms of the most unstable linear mode. However,
a transient growth of decaying modes can often be the dominant mechanism of
transition to turbulence in channel flows. We shall see in the next section that the
effect of heat on flow instability throws up several surprises.
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4. Transient growth
As mentioned in § 1, the typical flow through a channel goes through a transition

to turbulence at a Reynolds number far below the critical value for linear instability.
The mechanism of transition, except in extremely quiet flows, is thought to be due to a
combination of transient growth (in the initial stages) and nonlinearlity (Morkovin &
Reshotko 1989). In this study, we evaluate the effect of heating on the former, namely,
transient or algebraic growth of disturbances. Transient growth occurs because even
while all individual disturbance eigenmodes are exponentially decaying, they can
superimpose linearly to give fairly large levels of growth over finite periods of time
(Landahl 1980). If the entire process were to be linear, then at very large times,
the exponential decay would dominate and the flow would resume its original state.
However, if the transient disturbance amplitudes attained are sufficient to trigger
nonlinearities and the self-sustaining mechanism of vortex generation (Waleffe 1995,
1997), the flow can become turbulent. A necessary condition for the different modes
to superimpose in this manner is, of course, that the eigenfunctions should not be
orthogonal (Schmid & Henningson 2001; Criminale, Jackson & Joslin 2003). The
fact that the linear stability operator is not self-adjoint ensures that this is the case.
In wall-bounded flows, transient growth is mainly caused by the interaction between
the Orr–Sommerfeld and Squire modes (Reddy & Henningson 1993; Criminale et al.
2003) from the coupling term, −iβU ′, appearing in Squire’s equation. The most likely
structures arising owing to transient growth in unheated flows are streamwise streaks
(Reddy et al. 1998; Reddy & Henningson 1993, 1994; Schmid & Henningson 2001).
We use the standard approach for computing the maximum transient growth, details
are available in, for example, Schmid & Henningson (2001).

The effect of viscosity-stratification on transient growth, in contexts other than heat
(Malik & Hooper 2005; Chikkadi, Sameen & Govindarajan 2005) has been addressed
before, though not completely. The effect of buoyancy has been studied under stable
stratification alone by Biau & Bottaro (2004). The effect of heat diffusivity on transient
growth has not been studied before, to our knowledge.

The disturbance energy, g(t) (Schmid & Henningson 2001), is written as

g(t) =
‖κ(t)‖2

E

‖κ(0)‖2
E

=
‖e−iΛtκ(0)‖2

E

‖κ(0)‖2
E

. (4.1)

Its time evolution is represented by the matrix ∂κ/∂t = −iΛκ , where
κ = (κ1, κ2, ..., κN )T and Λ = diag{ω1, ω2, ..., ωN}, κj is the j th expansion coefficient of
the eigenfunctions of the linear modes which are the dominant contributors here. The
superscript T denotes transpose. The norm used in (4.1) is defined in the following
paragraphs.

A representative measure of transient energy growth remains to be defined. For the
case of zero Prandtl number, the density of disturbance kinetic energy is a meaningful
measure. In (3.2) to (3.4), as the Prandtl number increases the contribution to the
stability of the temperature fluctuations, T̂ will increase. For realistic Prandtl numbers,
the relevant measure of disturbance ‘energy’ is defined to be (see e.g. Hanifi, Schmid &
Henningson 1996; Carriere & Monkewitz 1999) of the form

E =

∫∫∫
A(u∗

i ui + v∗
i vi + w∗

i wi) + B(T̂ ∗T̂ ) dx dy dz, (4.2)

where ∗ denotes the complex conjugate. Since we are interested only in relative growth,
one of the coefficients, e.g. A, may be set to 1. For fixed spanwise and streamwise
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Figure 11. The energy amplification evolution for various viscosity ratios for Re = 3000, α = 1,
asymmetric heating. The thick dashed curve is for unstratified flow, and the solid lines are for
m= 1.2, 1.65 and 2.5 in the order indicated in the figure.

81 collocation points 161 collocation points

Gmax tmax m Gmax tmax m

196.001715 76.668427 1.00 196.001746 76.668439 1.00
196.841804 76.698949 1.49 196.841820 76.698956 1.49
198.671305 76.819408 1.96 198.671276 76.819395 1.96
201.396974 77.021089 2.51 201.396969 77.021087 2.51

Table 2. Comparison of results using 81 and 161 collocation points. The time at which the
maximum amplitude Gmax is attained is shown as tmax. Representative results at α = 0.0,
β =2.0, Re = 1000 and Pr =0 for the asymmetric profile are shown, but the accuracy is at
least as good over the entire parameter range.

wavenumbers, the integrals in these coordinates scale out of the problem, so

E =

∫
|u|2 + |v|2 + |w|2 + B|T̂ |2 dy. (4.3)

The coefficient B is a positive definite scalar, but arbitrary. A specific choice of B will,
of course, change the norm quantitatively, but the findings are not expected to change
qualitatively (Hanifi & Henningson 1998; Biau & Bottaro 2004). This assertion is
evaluated at the end of this section, but as in earlier work, we present results for B =1.

Maximizing equation (4.1) for all possible initial conditions κ(0), we have

G(t) = max
κ �=0

g(t). (4.4)

We then define Gmax as the maximum over time of G(t) for one particular set of
Re, α, β and �T (see figure 11). A comparison between the results from 81 and
161 collocation points in table 2 shows that 81 collocation points are sufficient to
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Figure 12. Dependence of Gmax on the number of modes taken into consideration for the
computations of transient growth. Asymmetric case, Re = 1000, β = 2 and α = 0.
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Figure 13. The contour of Gmax (the maximum over time of G(t)) for Re = 1000 in the
(α, β)-plane, �T = 0 K. This matches well with Reddy & Henningson (1993).

give accurate results for Gmax and the corresponding time at which it occurs, at any
viscosity ratio. The computed transient growth of the optimal perturbation will, in
principle, depend on the number N of eigenmodes taken into consideration, so it
must be ensured that all the contributing modes are included in the computation.
The dependence of Gmax on the number of modes is shown in figure 12. As seen, the
contribution of additional modes beyond j ∼ 25 is negligible. The contour plot for
Gmax for unheated flow is shown at Re = 1000 in figure 13, for comparison with the
results for heated flow to follow. A maximum growth of Gmax = 196 is obtained for
α = 0.0 and β = 2.05 (see Reddy & Henningson 1993).
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Figure 14. The variation of Gmax at α = 0 and β = 2 for various viscosity ratios at Re = 1000,
asymmetric heating. The maximum deviation of Gmax from the unheated value of 196 is only
3%.

4.1. Effect of viscosity stratification

As before, we first take the Prandtl number to be zero, i.e. assume that temperature
fluctuations diffuse away instantaneously. We also neglect buoyancy, in order to
isolate the effect of viscosity stratification alone. For the asymmetrically heated case,
the growth of kinetic energy is seen in figure 11 to change only marginally with
heating. The example shown in figure 11 is for Re = 3000 and α = 1. We have made
similar computations for a wide range of Reynolds numbers, wavenumbers and
temperature difference, and verified that a stratification of viscosity has very little
effect on transient growth for any configuration. The effect of asymmetric heating
is quantified in figure 14 in terms of Gmax at α = 0 and β = 2. There is a marginal
stabilization with viscosity stratification. This result is in line with the result for linear
stability, but much smaller in magnitude. For comparison, the variation of Gmax, again
at α =0 and β = 2, for symmetric heating is plotted in figure 15. Here too there is a
slight stabilization with increase in viscosity stratification.

The insignificant effect of viscosity stratification is consistent with our study of
transient growth in two-fluid and non-Newtonian flows (Chikkadi et al. 2005). As
discussed there, the U ′′ term, which affects the least stable eigenmode dramatically, has
no effect on streamwise vortices arising from α =0, which dictate transient growth.
The eigenspectrum, and typical eigenfunctions at α = 0 are shown in figure 16 to
be very similar at two extremes of viscosity stratification. Equation (3.3) drives the
dynamics rather than equation (3.2) under these conditions, and the terms containing
viscosity gradients have been verified numerically to be small.

4.2. Effect of heat diffusivity

It has been seen that the Prandtl number has a marginal effect on the most unstable
linear mode. In contrast, we find here that reducing heat diffusivity has a large
destabilizing effect on the transient growth of disturbance kinetic energy. In figure 17,
for a temperature difference of 25 K at a Reynolds number of 1000, the effect of
Prandtl number is shown. As the Prandtl number is increased from 10−4 to 1, the
transient growth is seen to increase dramatically. The large destabilization comes
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Figure 15. The Gmax variation at α =0.0 and β =2.0 for various viscosity ratios at Re = 1000,
symmetric heating. The maximum deviation of Gmax from that for unstratified flow is only
13%.
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Figure 16. (a) The eigenspectra for two extremes of viscosity stratification, m= 1 and 2.5, for
α = 0, Re = 1000 and β = 2.0, asymmetric heating. (b) The corresponding eigenfunctions of the
first two unstable eigenvalues in each case.

from a new region in the (α, β)-space, which is nearly two-dimensional. This is true
for symmetric heating as well (not shown). The result is qualitatively the same for
other temperature differences as well. We now have a situation where transient growth
dominates, but not via the standard streamwise streaks and streamwise vortices.

4.3. Effect of unstable density stratification

In their studies of stable thermal stratification, Biau & Bottaro (2004) have found
that as stratification increases, flow becomes increasingly stable, both in terms of
exponential growth and transient growth. Viscosity variations were not accounted for
in their calculation. In this paper, we concentrate on unstable thermal stratification.

Figures 18 to 21 show contour plots of maximum growth of transient energy for
various Grashof numbers at increasing Prandtl number for a temperature difference
of �T = 25 K. As expected, when heat diffusivity is high, buoyancy has little effect.
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Figure 17. Contour plot of Gmax for T = 25 K (asymmetric), Re =1000 for various Prandtl
numbers. (a) Pr = 10−4, (b) 10−2, (c) 10−1, (d) 1. Note that in (d) the scale employed is different.
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Figure 18. The transient growth at (a) Gr = 1, (b) Gr =104 for �T = 25 K, Re = 1000 and
Pr = 10−4 with asymmetric heating. Since temperature perturbations diffuse away rapidly,
buoyancy does not have much effect.

For Pr � 0.01, the Prandtl number dictates the instability, and buoyancy has very little
effect. At Pr = 1, however, the situation is completely different. For Grashof numbers
of 1000 and below, we see extremely large levels of subcritical transient growth.
This growth is two-dimensional. Above this Grashof number of course, a linearly
unstable mode exists. The transient growth in unheated channel flow is well known to
display itself as streamwise-independent structures, such as streaks and vortices. Our
results indicate that such structures will not be much in evidence in heated flows at
realistic Prandtl or Grashof numbers. Rather, a spanwise-independent growth occurs.
Experimental and numerical verification of this kind of transient growth could have
consequences for wall heating as a control option.
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Figure 19. As figure 18, but for Pr =10−3. The Grashof number has no effect up to a value
of ∼104. At Gr = 104 a new growth appears at β = 0, which will dominate at higher Prandtl
number.
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Figure 20. As figure 18, but for Pr = 10−2. The new subcritical mode is now dominant at low
Grashof number as well. The spanwise-independence of the largest transient growth, making
the Poiseuille–Rayleigh–Bénard problem essentially two-dimensional, is unusual.

We now return to the question of how good a choice B = 1 is in (4.3). It is reasonable
to assume that transient growth of disturbance kinetic energy and of temperature
perturbations will each contribute to the growth of nonlinearities and hence to the
later stages of transition, but direct numerical simulations or experiment are required
to estimate their relative roles, i.e. to fix what value of B would correspond closest
to reality. At extremely low Prandtl numbers, with B ∼ O(1) the contribution of the
temperature perturbation to (4.3) is negligible compared to that of the kinetic energy.
At extremely high Prandtl numbers, the reverse would be true, as has been verified
from the eigenfunctions. In these limits, B will not affect the result even numerically,
so long as it is O(1). It is at Pr ∼ 1 that the choice of B will matter most to the
numerical value of the result. This expectation is borne out in figure 22, where the
contour of Gmax is plotted for two different Prandtl numbers, for B =0.2, 1 and 2. At
Pr = 1, the transient growth is smaller at smaller B , but the qualitative behaviour is
the same. At Pr =7, changing B has less of an effect. Here if the kinetic energy alone
were to be considered, i.e. if B were set equal to 0, the transient growth is much smaller
(not shown), but the biggest growth is still at β = 0. However, as discussed above,
a non-zero B would be a more natural choice. Thus, our prediction that spanwise
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Figure 21. As figure 18, except that Pr = 1. (a) Gr = 1 (b) 102, (c) 103, (d) 104. The transient
growth is even higher than before. The region inside the thick curve for Gr = 104 is linearly
unstable.

independent structures and not streamwise streaks will dominate transient growth
is robust and independent, within limits, of the choice of B . Finally, note that all
computations of Gmax are only indicative of how large the maximum possible transient
growth can be, the actual numbers are not too significant, except in comparison to
each other. Experimental estimates of transient growth are therefore much in order.

5. Secondary instability
A flow containing linear modes (either growing or decaying) of sufficient amplitude

Ap can become unstable to new secondary modes of instability. Both transient
disturbance growth and secondary instability require that the flow contain a non-
negligible amplitude of the linear eigenmodes. However, secondary instabilities depend
only on the least stable linear mode, and are exponentially growing, while optimum
transient growth occurs only when several linear eigenmodes co-exist at appropriate
amplitude ratios. In unheated channel flow, secondary instability is considered
unimportant, since it it is believed to play a role only when external disturbance
levels are extremely small. We show here that viscosity variations can significantly
destabilize the secondary mode, thus making it more relevant to the transition process.
The Prandtl number and Grashof number are set equal to zero.

The basic flow is now made up of two components, the steady laminar flow velocity
U (y) and the primary (linear) mode of instability ûp(x, y, z, t) obtained in the previous
sections. A subscript p has been introduced in this section to denote the primary
mode, to distinguish it from the secondary mode us . The primary mode is by definition
(equation (3.1)) periodic in the streamwise and spanwise directions. In the regime of
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interest, its rate of growth or decay is usually at least two orders of magnitude smaller
than its frequency of oscillation. Thus, the new basic flow may be approximated to
be periodic in time as well. A Floquet analysis, employing the standard approach as
in Herbert (1983) and Bayly, Orszag & Herbert (1988), is carried out to study the
stability of this flow. All flow variables are decomposed in the form

u(x, y, z, t) = U (y) + Apûp(x, y, t) + Asûs(x, y, z, t), (5.1)

where As is the amplitude of the secondary. Note that with Pr = 0 and Gr = 0, Squire’s
transformation (Squire 1933) (substituting α̃2 = α2+β2 and α̃R̃e = αRe) can be applied
to (3.2), to show that two-dimensional disturbances become unstable at the lowest
Reynolds number when viscosity stratification alone is taken into consideration. The
z-dependence of up is thus dropped in (5.1). The secondary perturbation quantities
are assumed to be of the form

(ûs, v̂s, ŵs) = 1
2

[
(u+, v+, w+)(y, t)ei(α+x+β+z) +(u−, v−, w−)(y, t)ei(α−x+β−z) +c.c.

]
, (5.2)

where α+ and α− are the wavenumbers of the secondary waves in the streamwise
direction, and β+ and β− are the corresponding wavenumbers in the spanwise
direction. Direct interactions between primary modes are assumed to be negligible,
so nonlinear terms in the primary are dropped. Given the slow rate of decay, the
variation of Ap over one cycle is neglected. The above decompositions are substituted
into the momentum equations, the pressure is eliminated and nonlinear terms in
the secondary disturbance are neglected. Then using the continuity equation, the
streamwise component of secondary disturbance velocity is eliminated and we obtain
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81 collocation points 161 collocation points

ωi ωr βs ωi ωr βs

0.000611 0.152931 0.50 0.000629 0.152943 0.50
0.017780 0.132593 1.00 0.017783 0.132595 1.00
0.013759 0.132595 2.00 0.013761 0.132595 2.00
0.007902 0.132595 3.00 0.007904 0.132595 3.00
0.002568 0.132595 4.00 0.002568 0.132595 4.00

−0.002646 0.132595 5.00 −0.002645 0.132595 5.00

Table 3. Sensitivity of the least stable eigenvalues to number of collocation points. The results
are shown at α = 1.0 and m= 2.5 for the symmetric profile with Re = 5000, α+ = 0.5 and
As = 0.01. The convergence is better for smaller viscosity ratios.

secondary perturbation equations in v+, v∗
−, w+ and w∗

−. Upon suitable averaging
over one wavelength in x and z and over one cycle in time, it is seen that only the
resonant modes survive, which are related by

α+ + α− = α, β+ = −β− = βs. (5.3)

The cases of α+ =α/2 and α+ = α are called the subharmonic and the fundamental
modes, respectively. The final equations for secondary stability are

−D
∂v+

∂t
+ s

∂f+

∂t
= −sAf+ + (AD − iα+(DU ))v+ − Ap

[
iα2

+

2α−
upD +

vpα+D2

2α−

+
i(Dup)α+

2

]
v∗

− +
Apα2

+

2

[
−vpD + iα−up +

iβ2
s

α−
up +

β2
s

α+α−
vpD

]
f ∗

−, (5.4)

∂v+

∂t
− D

∂f+

∂t
= −Av+ + (AD + (DA))f+ − Ap(α + α−)

2

[
vp

α−
D − iup

]
v∗

−

+
Ap

2

[
−i(α + α−)upD − iα−(Dup) + vp

(
α+β2

s

α−
+ D2

)]
f ∗

−, (5.5)

where A= [iα+U + µs − µd2 − µ′D], f+ = −(i/βs)w+ and s =α +2 +β2
s , D= d/dy.

Equations (5.4) and (5.5) and the complementary equations for v∗
− and f ∗

− are
solved using a Chebyshev collocation spectral method, with the boundary conditions
ûs, v̂s, ŵs = 0 at y = ± 1. The dispersion relation is F (Ap, βs, m, Re, α, c, )= 0 (see
Herbert 1983). The growth rate is highly sensitive to the primary amplitude level
Ap , and increases with increasing Ap . The present computations are validated by
comparing with the unstratified case in Herbert (1983) as discussed in Sameen (2004).
The agreement is excellent. The results are again obtained with 81 collocation points,
and table 3 shows that doubling the number of collocation points does not change
the answers much.

We first study asymmetric heating. A value of Ap = 0.01 is taken, to be representative
of an intermediate level of primary disturbance. The variation of secondary growth
rate ωis with the spanwise wavenumber for various viscosity ratios is plotted in
figure 23. As the temperature difference increases, a second highly unstable mode
appears. This mode is three-dimensional, the spanwise and streamwise wavelengths
being very close to each other. The modes which are closer to two-dimensional are
now stabilized. A nonlinear or transient growth triggered by this new mode could
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Figure 23. Dependence of growth rate on spanwise wavenumber of the secondary disturbance
for various viscosity ratios, subharmonic case, asymmetric heating. α = 1.0, Ap = 0.01,
Re = 5000.
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Figure 24. Variation with time of the amplitude of secondary disturbance for two sets of
initial Ap . α = 1.0, βs =1.0, Re = 5000, subharmonic mode, asymmetric heating.

mean that transition to turbulence proceeds somewhat differently, but further studies
are required to evaluate this.

While we have taken the amplitude of the primary mode to be constant, it is in fact,
at these Reynolds numbers, a known slowly decaying function of time. Integrating
instantaneous results over long times, we can compute the time dependence of the
amplitude of the secondary mode. This approach is a counterpart in time of the as-
sumption of parallel flow in flows which vary slowly in x. The amplitude of the
subharmonic secondary mode As is shown as a function of time in figure 24. At low
initial Ap , secondary modes are always stable whereas for higher Ap significant growth
is displayed up to large times. At low Reynolds number, the initial Ap required for
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Figure 25. Variation of PS with spanwise wavenumber for various viscosity ratios,
subharmonic case, asymmetric heating. α = 1.0, Ap = 0.01, Re = 5000.
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Figure 26. The dependence of growth rate on the spanwise wavenumber of the secondary
disturbance for various viscosity ratios, subharmonic case. α = 1.0, Ap =0.01, Re = 5000,
symmetric heating.

a sustained secondary instability growth is very high. In figure 25, the phase shift
PS = ωpα+/α − ωs is shown as a function of the spanwise wavenumber. The phase
locking of the subharmonic wave (i.e. where PS is zero) is achieved at an earlier βs

than for the unstratified case.
It has been seen earlier that results from a symmetrically heated channel can

be more intuitive than with asymmetric heating. For this reason, we examine this
case. Figure 26 shows the secondary perturbation growth-rate variation with spanwise
wavenumber βs . A stabilization with increase in viscosity ratio, especially when m > 1,
is evident. This behaviour is remarkable, being counterintuitive and opposite to the
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Figure 27. The new mode of instability arises from changes in the velocity profile. This is
verified by switching off the viscosity gradient terms in the secondary stability equation. The
dashed lines are for the full equation and the filled circles are with the viscosity gradient
set to zero in the instability calculations, but retained in the mean flow computations.
�T = 50(m=2.5), α = 1.0, αs = 0.5, Ap = 0.01, Re = 5000, asymmetric heating.

behaviour of the primary instability mode. The phase-locking behaviour is similar to
the asymmetrically heated case.

We have seen that in linear disturbance growth, the mean velocity profile (via the
U ′′ term) has a dominant role. In the case of secondary growth as well, Orszag &
Patera (1983) have argued that inviscid effects are dominant, and act through vortex
stretching and tilting. We are not able to make a conclusive statement on this, but
it seems that heating affects secondary instability by an inviscid mechanism, through
changes in the velocity profile. This is demonstrated in figure 27, where it is seen that
switching off the viscosity gradient terms makes little difference to the result. Also, it
is not evident why the sign of instability is opposite to that of primary modal growth.
The inference here is that viscosity stratification alone can have unexpected effects on
the various mechanisms leading to transition to turbulence.

6. Conclusion
In plane channel flow we have conducted a comprehensive study of the effect

of heat, and show that there is no unique direction (either towards or away from
stabilization) in which the flow responds. The linear stability results are in line with
the findings of earlier studies. A decrease in viscosity as the wall is approached
has a large stabilizing effect and vice versa. The effect on the linear eigenmode
of reduced heat diffusion (increasing Prandtl number) is extremely small (Wall &
Wilson 1996). Buoyancy has no effect up to a Grashof number of about 3000
and is enormously stabilizing or destabilizing thereafter, depending on the sign of
the temperature difference. The Poiseuille–Rayleigh–Bénard and Tollmien–Schlichting
modes are distinct at low Grashof number and merge at high Grashof numbers.

The effect of heat on transient growth of instabilities is unexpected. Viscosity
stratification, which is the chief player in linear instability, has no discernible effect
on this mechanism. Increasing Prandtl number, on the other hand, has an order of
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magnitude destabilizing effect. Both of these are counter to the effect on the least
stable linear mode. The assumption that Prandtl number may be neglected in stability
analyses is therefore completely incorrect for this mechanism. Transient growth is also
very high in the presence of buoyancy of the appropriate sign. With increasing Prandtl
and/or Grashof number, the growth is two-dimensional, not in streamwise streaks,
which is quite unusual for transient growth.

Secondary instabilities of the Tollmien–Schlichting modes are usually taken to be
unimportant for channel-flow transition, but we find that viscosity-stratification can
have a destabilizing effect on these modes, which may make them noticeable at large
temperature differences.

It is hoped that this work with give impetus to experimental and computational
studies to check these predictions and to explore wall heating in all its aspects as a
control strategy for channel and pipe flows.

We are indebted to Professor O.N. Ramesh for discussions throughout the course
of this work and for reading the manuscript. A part of the work was carried out
during the tenure of A. S. as a PhD student at the Indian Institute of Science. R.G.
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Dr Rao Tatavarti for his constant encouragement.
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